organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Arunchalam Kannan,^a Ina Dix,^a Henning Hopf^a and Peter G. Jones^b*

^aInstitut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study T = 143 K Mean σ (C–C) = 0.003 Å R factor = 0.044 wR factor = 0.107 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[2.2] Dihydroisobenzothiophenophane

In the unit cell of the title compound, 1^{1} , 1^{3} , 4^{1} , 4^{3} -tetrahydro-1,4(4,7)-di(benzo[*c*]thiophena)cyclohexaphane, $C_{20}H_{20}S_{2}$, there are four independent but closely similar molecules, each with crystallographic inversion symmetry. The packing is interpreted in terms of layers formed *via* C-H··· π interactions.

Comment

2,5-Dihydroisobenzothiophene and its derivatives are useful substrates for the generation of *o*-xylylene intermediates, which can subsequently be trapped by various double- and triple-bond dienophiles to yield six-membered ring systems (Gajewski, 2004). In order to produce such intermediates in the cyclophane series, we required the title [2.2]cyclophane, (2), as a precursor. This is easily obtained from the tetrabromide, (1) (El-Tamany & Hopf, 1980; see *Experimental* section). Here, we report the structure determination of (2) by single-crystal X-ray crystallography.

Compound (2) crystallizes with four independent molecules in the unit cell, each with inversion symmetry (Fig. 1). Molecule 1 is centred at $(\frac{1}{2}, 0, 0)$, molecule 2 (primed atom names) at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, molecule 3 (doubly primed atom names) at $(0, \frac{1}{2}, 0)$,

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 16 September 2005 Accepted 19 September 2005

Online 8 October 2005

A packing diagram of the title compound, showing a view of one layer at $z \simeq 0$. C-H··· π contacts (see text) are indicated by dashed lines: H atoms not involved in these interactions have been omitted.

and molecule 4 (starred atom names) at $(1, 0, \frac{1}{2})$. IUPACconsistent numbering has been chosen as far as possible consistent with the crystallographic symmetry.

All four molecules are closely similar. Bond lengths and angles, e.g. those at the S atoms (Table 1), may be considered normal. The six-membered rings show the flattened boat conformation typical of [2.2]cyclophanes, with the bridgehead atoms lying 0.15–0.16 Å out of the plane of the other four atoms. The C-C bonds in the bridges are lengthened (Table 1), also typical of cyclophanes. The thiophenyl rings are planar (r.m.s. deviations < 0.01 Å) and subtend angles of $0-2^{\circ}$ with the above planes. Full numerical details are given in the deposited CIF.

The molecular packing involves layers parallel to (001). Molecules 1 and 3 form a layer at $z \simeq 0$ (Fig. 2), and molecules 2 and 4 a layer at $z \simeq \frac{1}{2}$ (Fig. 3). Both within and between the layers there are a number of $C-H \cdots S$ contacts (Table 2), but these are long (> 2.9 Å) and have no clear upper length limit. For this reason, we prefer to analyse the packing in terms of $C-H \cdot \cdot \pi$ interactions, as we have done previously for other cyclophane systems (e.g. El Shaieb et al., 2003). There are four such interactions, listed in Table 2 for normalized C-H bond lengths of 1.08 Å (Steiner, 1998) and for centroids Cg1-Cg4 calculated from the four non-bridgehead atoms C4, C5, C7 and C8 of the six-membered rings. However, we note that all four contacts display either narrow angles or long distances.

Experimental

A solution of the tetrabromide, (1), (1.74 g, 3.0 mmol) in dimethylformamide (DMF; 100 ml) was added to a well stirred suspension of sodium sulfide enneahydrate (1.44 g, 6.0 mmol) in DMF (350 ml) at room temperature over 8 h. After the addition was complete, the mixture was stirred for another 12 h. Extraction with dichloromethane, drying of the organic phase over sodium sulfate and solvent

Figure 3

A packing diagram of the title compound, showing a view of one layer at $z \simeq \frac{1}{2}$. C-H··· π contacts (see text) are indicated by dashed lines; H atoms not involved in these interactions have been omitted.

removal provided (2) (0.7 g, 80%) after silica-gel chromatography. The structure of (2) is also supported by all other spectroscopic and analytical data (Kannan & Hopf, unpublished results).

Crystal data

$C_{20}H_{20}S_2$	Z = 4
$M_r = 324.48$	$D_x = 1.379 \text{ Mg m}^{-3}$
Friclinic, P1	Mo $K\alpha$ radiation
a = 10.088 (2) Å	Cell parameters from 52
p = 10.182 (2) Å	reflections
c = 15.247 (2) Å	$\theta = 10-11.5^{\circ}$
$\alpha = 86.53 \ (2)^{\circ}$	$\mu = 0.33 \text{ mm}^{-1}$
$\beta = 88.44 \ (2)^{\circ}$	T = 143 (2) K
$\nu = 89.81 \ (2)^{\circ}$	Prism, colourless
V = 1562.7 (5) Å ³	$0.6 \times 0.35 \times 0.3 \text{ mm}$
Data collection	
Stoe STADI-4 diffractometer	$\theta_{\rm max} = 25.0^{\circ}$
∂/ω scans	$h = -12 \rightarrow 6$

 $k = -12 \rightarrow 12$

 $l = -18 \rightarrow 18$

3 standard reflections

frequency: 60 min

intensity decay: 2%

-3

 $\theta | \omega$ scans Absorption correction: none 9570 measured reflections 5496 independent reflections 4469 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0354P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.044$ + 1.5793*P*] $wR(F^2) = 0.107$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.01 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^2$ 5496 reflections $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ 397 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

S1-C18	1.814 (3)	S1''-C18''	1.807 (3)
S1-C17	1.824 (3)	S1''-C17''	1.826 (3)
C2-C9 ⁱ	1.589 (4)	C2''-C9'' ⁱⁱⁱ	1.590 (4)
S1'-C17'	1.813 (2)	S1*-C18*	1.811 (3)
S1'-C18'	1.819 (3)	S1*-C17*	1.818 (3)
C2'-C9' ⁱⁱ	1.585 (4)	$C2^{*}-C9^{*iv}$	1.589 (4)
C10 01 C17	05 (2 (11)	C10// 01// C15//	05.54 (10)
C18-S1-C17	95.62 (11)	C18'' - S1'' - C17''	95.74 (12)
C17' - S1' - C18'	95.44 (11)	C18*-S1*-C17*	95.87 (12)

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (iv) -x + 2, -y, -z + 1.

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2''-H2''2···S1'	0.99	2.95	3.723 (3)	136
$C9'' - H9''2 \cdot \cdot \cdot S1'^{iii}$	0.99	3.02	3.732 (3)	130
$C9*-H9*1\cdots S1''^v$	0.99	2.96	3.937 (3)	168
$C7-H7\cdots S1^{*^{vi}}$	0.95	2.94	3.854 (3)	162
C9′-H9′1···S1	0.99	3.07	3.907 (3)	143
$C8''-H8''\cdots S1^{vii}$	0.95	3.08	3.896 (3)	145
$C8*-H8*\cdots S1'^{v}$	0.95	3.10	3.879 (3)	140
$C17-H17B\cdots S1^{*viii}$	0.99	3.07	3.974 (3)	153
$C18'' - H18F \cdot \cdot \cdot Cg1^{ix}$	1.08	2.74	3.63	140
$C18-H18A\cdots Cg3$	1.08	2.78	3.66	111
$C17' - H17C \cdot \cdot \cdot Cg4^{ii}$	1.08	2.61	3.45	135
$C2^*-H2^*2\cdots Cg2^v$	1.08	2.98	4.04	166

Symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (v) x + 1, y, z; (vi) x, y, z - 1; (vii) -x + 1, -y + 1, -z; (viii) -x + 1, -y, -z + 1; (ix) x - 1, y, z.

H atoms were included in calculated positions and refined using a riding model, with fixed C–H bond lengths of 0.95 Å (sp^2 CH) or 0.99 Å (CH₂). U_{iso} (H) values were fixed at 1.2 times U_{eq} of the parent atom.

Data collection: *DIF4* (Stoe & Cie, 1992); cell refinement: *DIF4*; data reduction: *REDU4* (Stoe & Cie, 1992); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL97*.

The authors thank Mr A. Weinkauf for technical assistance.

References

El Shaieb, K., Narayanan, V., Hopf, H., Dix, I., Fischer, A., Jones, P. G., Ernst, L. & Ibrom, K. (2003). *Eur. J. Org. Chem.* pp. 567–577.

El-Tamany, S. H. & Hopf, H. (1980). Tetrahedron Lett. 21, 4901–4904.

Gajewski, J. J. (2004). *Hydrocarbon Thermal Isomerizations*, 2nd ed., p. 225, and references therein. Amsterdam: Elsevier.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1994). XP. Version, 5, 03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Steiner, T. (1998). Acta Cryst. B54, 456-463.

Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.